Assessing developmental roles of MKK4 and MKK7 in vitro
نویسندگان
چکیده
In vivo gene knockout studies in mice have revealed essential roles of the mitogen-activated protein kinases (MAPKs) in embryogenesis, but due to early lethality of the knockout embryos, the underlying mechanisms and specific developmental programs regulated by the MAPK pathways have remained largely unknown. In vitro differentiation of mouse embryonic stem cells (ESCs) have opened new possibilities for understanding lineage segregation and gene function in the developmental stages that are not normally accessible in vivo. Building on this technology, in combination with gene knockout cells, we investigated the roles of MKK4 and MKK7, two upstream kinases of the MAPKs, in early lineage specification. Our results show that MKK4 and MKK7 differentially regulate the JNK and p38 MAPKs and make distinct contributions to differentiation programs. In vitro ESC differentiation is a valuable system to investigate the molecular and signaling mechanisms of early embryogenesis.
منابع مشابه
Distinct signaling properties of mitogen-activated protein kinase kinases 4 (MKK4) and 7 (MKK7) in embryonic stem cell (ESC) differentiation.
Signal transduction pathways are integral components of the developmental regulatory network that guides progressive cell fate determination. MKK4 and MKK7 are upstream kinases of the mitogen-activated protein kinases (MAPKs), responsible for channeling physiological and environmental signals to their cellular responses. Both kinases are essential for survival of mouse embryos, but because of e...
متن کاملMKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines.
Mitogen-activated protein kinases (MAPK) are activated by phosphorylation on Thr and Tyr by MAPK kinases. Two MAPK kinases (MKK4 and MKK7) can activate the c-Jun NH(2)-terminal kinase (JNK) group of MAPK in vitro. JNK is phosphorylated preferentially on Tyr by MKK4 and on Thr by MKK7. Targeted gene-disruption studies in mice were performed to examine the role of MKK4 and MKK7 in vivo. Simultane...
متن کاملA Protoberberine Derivative HWY336 Selectively Inhibits MKK4 and MKK7 in Mammalian Cells: The Importance of Activation Loop on Selectivity
A protoberberine derivative library was used to search for selective inhibitors against kinases of the mitogen-activated protein kinase (MAPK) cascades in mammalian cells. Among kinases in mammalian MAPK pathways, we identified a compound (HWY336) that selectively inhibits kinase activity of mitogen-activated protein kinase kinase 4 and 7 (MKK4 and MKK7). The IC50 of HWY336 was 6 µM for MKK4 an...
متن کاملSynergistic activation of stress-activated protein kinase 1/c-Jun N-terminal kinase (SAPK1/JNK) isoforms by mitogen-activated protein kinase kinase 4 (MKK4) and MKK7.
Stress-activated protein kinase 1 (SAPK1), also called c-Jun N-terminal kinase (JNK), becomes activated in vivo in response to pro-inflammatory cytokines or cellular stresses. Its full activation requires the phosphorylation of a threonine and a tyrosine residue in a Thr-Pro-Tyr motif, which can be catalysed by the protein kinases mitogen-activated protein kinase kinase (MKK)4 and MKK7. Here we...
متن کاملTargeted deletion of the mitogen-activated protein kinase kinase 4 gene in the nervous system causes severe brain developmental defects and premature death.
The c-Jun NH2-terminal protein kinase (JNK) is a mitogen-activated protein kinase (MAPK) involved in the regulation of various physiological processes. Its activity is increased upon phosphorylation by the MAPK kinases MKK4 and MKK7. The early embryonic death of mice lacking an mkk4 or mkk7 gene has provided genetic evidence that MKK4 and MKK7 have nonredundant functions in vivo. To elucidate t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2012